Районная репетиционная работа по химии в форме основного государственного экзамена в 9-х классах в 2018-2019 учебном году

Вариант №1

Система оценивания экзаменационной работы по химии

Часть 1

Верное выполнение каждого из заданий 1-15 оценивается 1 баллом.

За полный правильный ответ на каждое из заданий 16-19 оценивается 2 баллами: если допущена одна ошибка, то за ответ выставляется 1 балл. Если допущено две и более ошибок или ответ отсутствует, то оценивается 0 баллов.

N зад	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
ответ	2	3	3	2	3	4	2	1	4	3	2	4	2	2	2	12	34	122	345

Часть 2 Критерии оценивания заданий с развёрнутым ответом

Используя метод электронного баланса, расставьте коэффициенты в уравнении реакции, схема которой

$$NH_3 + CuO \longrightarrow N_2 + Cu + H_2O$$

Определите окислитель и восстановитель.

Содержание верного ответа и указания к оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
1) Составлен электронный баланс:	
$1 \mid 2N^{-3} - 6e \rightarrow N_2^{0}$	
$3^{\dagger} \operatorname{Cu}^{+2} + 2e \rightarrow \operatorname{Cu}^{0}$	
2) Расставлены коэффициенты в уравнении реакции:	
$2NH_3 + 3CuO \longrightarrow N_2 + 3Cu + 3H_2O$	
3) Указано, что азот в степени окисления -3 (или NH ₃) является восстановителем, а	
медь в степени окисления +2 (или Cu) – окислителем	
Ответ правильный и полный, содержит все названные выше элементы	3
Допущена только в одном из перечисленных выше элементов ответа ошибка.	2
Допущены ошибки в двух из перечисленных выше элементов ответа.	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

При нагревании технического нашатыря, содержащего 5% примесей, с гидроксидом натрия выделилось 300 мл аммиака (н. у.). Определите массу технического препарата, взятую для реакции.

Содержание верного ответа и указания к оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
1) Составлено уравнение реакции:	
$NH_4Cl + NaOH = NaCl + NH_3 + H_2O$	
2) Рассчитано количество аммиака:	
$n(NH_3) = 0.3/22.4 \approx 0.013$ моль	
3) Рассчитана масса технического нашатыря:	
а) $n(NH_4Cl) = n(NH_3) = 0.013$ моль, $M(NH_4Cl) = 53.5$ г/моль, $m(NH_4Cl)$ чист =	
$0.013*53.5 = 0.6955 \Gamma$	
б) m(NH ₄ Cl с прим) = m(NH ₄ Cl)/ ω (NH ₄ Cl) = 0,6955/0,95 \approx 0,732 г	
Ответ правильный и полный, содержит все названные выше элементы	3
Правильно записаны два первых элемента ответа	2
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	3

20

21

Даны вещества: $FeSO_4$, HCl, $ZnSO_4$, $Al_2(SO_4)_3$, H_2O_2 , NaOH. Используя воду и необходимые вещества только из этого списка, получите в две стадии гидроксид железа (III). Опишите признаки проводимых реакций. Для реакции ионного обмена напишите сокращённое ионное уравнение.

Содержание верного ответа и указания к оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Элементы ответа:	
Составлены два уравнения реакций:	
1) FeSO4 + 2NaOH = Na2SO4 + Fe(OH)2	
2) $2\text{Fe}(OH)_2 + H_2O_2 = 2\text{Fe}(OH)_3$	
Описаны признаки протекания реакций:	
3) для первой реакции: образование осадка белого (или зелёного, или серого) цвета	
4) для второй реакции: осадок белого (или зелёного, или серого) цвета изменяется на	
бурый (или кирпичный)	
5) Составлено сокращённое ионное уравнение первой реакции:	
$Fe^{2+} + 2OH^{1-} = Fe(OH)_2$	
Ответ правильный и полный, содержит все названные элементы	5
Правильно записаны четыре элемента ответа	4
Правильно записаны три элемента ответа	3
Правильно записаны два элемента ответа	2
Правильно записано один элемент ответа	1
Все элемента ответа записаны неверно	0
Максимальный балл	5