Районная репетиционная работа по физике в форме единого государственного экзамена в 11 классах 2017-2018 учебный год

Справочные данные

Десятичные приставки		
Наименование	Обозначение	Множитель
гига	Γ	10^{9}
мега	M	10^{6}
кило	К	10^{3}
гекто	Γ	10^{2}
санти	c	10 ⁻²
милли	M	10^{-3}
микро	МК	10 ⁻⁶
нано	Н	10 ⁻⁹

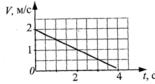
Константы	
Ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
Гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \frac{\text{H} \cdot \text{M}^2}{\text{K}\Gamma^2}$
Скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
Элементарный электрический заряд	$e = 1,6 \cdot 10^{-19} \mathrm{K}$ л

Плотность			
бензин	$710 \frac{\kappa \Gamma}{M^3}$	древесина (сосна)	$400 \frac{\mathrm{Kr}}{\mathrm{M}^3}$
спирт	$800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	парафин	$900 \frac{\mathrm{Kr}}{\mathrm{M}^3}$
керосин	$800 \frac{\text{K}\Gamma}{\text{M}^3}$	лёд	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
масло машинное	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	алюминий	$2700 \frac{\kappa \Gamma}{M^3}$
вода	$1000 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	мрамор	$2700 \frac{\kappa \Gamma}{M^3}$
молоко цельное	$1030 \frac{\text{K}\Gamma}{\text{M}^3}$	цинк	$7100 \frac{\kappa \Gamma}{M^3}$

вода морская	$1030 \frac{\text{K}\Gamma}{\text{M}^3}$	сталь, железо	$7800 \frac{\kappa \Gamma}{M^3}$
глицерин	1260 кг м3	медь	$8900 \frac{\text{KT}}{\text{M}^3}$
ртуть	$13\ 600\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	свинец	$11\ 350\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$

Удельная электрическое сопротивление, $\frac{\text{Ом} \cdot \text{мм}^2}{\text{м}}$ (при 20°C)			
серебро	0,016	никелин	0,4
медь	0,017	нихром (сплав)	1,1
алюминий	0,028	фехраль	1,2
железо	0,10		
Температура плавления		Температура кипения	
свинца	327°C	воды	100°C
олова	232°C	спирта	78°C
льда	0°C		

Удельная			
теплоёмкость воды	4200 <u>Дж</u> кг·°С	теплота парообразования воды	$2,3\cdot 10^6 \frac{\mathcal{I}_{K\Gamma}}{\kappa_{\Gamma}}$
теплоёмкость спирта	2400 	теплота парообразования спирта	9,0 · 10 ⁵ Дж кг
теплоёмкость льда	2100 <u>Дж</u> кг·°С	теплота плавления свинца	$2.5 \cdot 10^4 \frac{\text{Дж}}{\text{кг}}$
теплоёмкость алюминия	920 Дж кг·°С	теплота плавления стали	$7.8 \cdot 10^4 \frac{\text{Дж}}{\text{кг}}$
теплоёмкость стали	500 Дж	теплота плавления олова	$5.9 \cdot 10^4 \frac{\text{Дж}}{\text{кг}}$

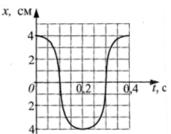

теплоёмкость цинка	400 Дж кг⋅ос	теплота плавления льда	$3.3 \cdot 10^5 \frac{\text{Дж}}{\text{кг}}$
теплоёмкость меди	400 Дж кг · °С	теплота сгорания спирта	$2.9 \cdot 10^7 \frac{\text{Дж}}{\text{кг}}$
теплоёмкость олова	230 Дж кг⋅ос	теплота сгорания керосина	$4,6 \cdot 10^7 \frac{\text{Дж}}{\text{кг}}$
теплоёмкость свинца	130 Дж кг⋅ос	теплота сгорания бензина	$4,6 \cdot 10^7 \frac{\text{Дж}}{\text{кг}}$
теплоёмкость бронзы	420 <u>Дж</u>		
Нормальные условия: давление 10 ⁵ Па, температура 0°С.			

ВАРИАНТ 1

Часть 1

Ответом к заданиям 1-24 являются слово, цифра, число или последовательность цифр. Запишите ответ в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

С помощью графика (см. рисунок) определите характер движения и путь, пройденный телом за 2 с.


Ответ:

Во время противостояния Марс приближается к Земле на расстояние $78 \cdot 10^6$ км. Как уменьшится сила притяжения Земли к Марсу, когда планеты разойдутся на расстояние $156 \cdot 10^6$ км?

Домохозяйка развешивала бельё на балконе 8-го этажа и уронила прищепку. Определите скорость прищепки, когда она пролетала 5-й этаж дома. Считать высоту этажа равной 2,5 м.

Otbet: M/c.

Используя график зависимости координаты колеблющейся точки от времени (см. рисунок), определите период колебаний.

Ответ: с.

В таблице приведены результаты измерения силы сопротивления движения тела в жидкости в зависимости от скорости тела. Как зависит сила сопротивления от скорости?

V, M/c	3	5	7
F, H	500	1300	2720

Выберите *два* верных утверждения на основании приведённой таблицы.

Увеличивается пропорционально первой степени скорости.

Увеличивается пропорционально квадрату скорости.

Не зависит от скорости.

С ростом скорости сила сопротивления увеличивается.

С ростом скорости сила сопротивления уменьшается.

Ответ:

Качели отклонили от положения равновесия на не который угол. Как при достижении положения равновесия изменится угол отклонения от положения равновесия и потенциальная энергия качелей?

Для каждой величины определите соответствующий характер изменения:

увеличится

уменьшится

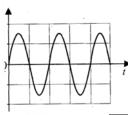
не изменится

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Угол отклонения от положения	Потенциальная
равновесия	энергия качелей

Математическому маятнику сообщили начальный импульс в горизонтальном направлении. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в

таблицу выбранные цифры под соответствующими буквами.

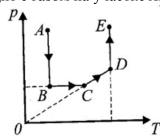

ГРАФИКИ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) координата
- 2) потенциальная энергия
- 3) кинетическая энергия
- 4) ускорение

Б)

A)

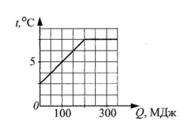

Ответ:

A	Б

Газ в закрытом сосуде нагревают от 27°C до 327°C. Во сколько раз увеличилось давление газа?

Ответ: в______ раз(-а).

На рисунке приведён график зависимости давления неизменной массы газа от температуры. Изменения происходят в направлении, указанном стрелками. Какой процесс происходит с газом на участке *AB*?


Ответ: ______

Какова относительная влажность воздуха, если парциальное давление водяного пара, находящегося в воздухе, в 8 раз меньше давления насыщенного водяного пара при той же температуре?

Ответ: ______%

11 Температуры жидкости от переданного количества теплоты. Какой вывод может сделать школьник, проанализировав полученный график?

Выберите *два* верных утверждения, соответствующих графику.

Жидкость нагревалась.

Жидкость нагревалась и кипела.

Жидкость кипела.

Жидкость конденсировалась и охлаждалась.

Жидкость нагревалась и плавилась

Ответ:

Газ изобарно нагревают. Как пр плотность? Для каждой величины определит изменения: увеличится уменьшится	
	www.
	Плотность газа
iviacca i asa	Плотность газа
Конденсатору ёмкостью 5 мкФ с количество теплоты выделится обкладки конденсатора?	в проводнике, замыкающим
Найдите отношение выделяющейся в цепи после	мощности,
	плотность? Для каждой величины определитизменения: увеличится уменьшится не изменится Запишите в таблицу выбранфизической величины. Цифры в Масса газа Конденсатору ёмкостью 5 мкФ околичество теплоты выделится обкладки конденсатора? Ответ:

15	На рисунке представлена система двух точечных Ао
	неподвижных одинаковых по
	величине и по знаку $+q$ $+q$
	положительных зарядов. Куда направлена (вправо, $-a$ 0 $+a$
	влево, вверх, вниз, от
	наблюдателя, к наблюдателю) напряжённость поля
	системы зарядов в точке А? Ответ запишите словом
	(словами).
	Ответ:
	Что покажет стрелка гальванометра,
16	подсоединённого в разрыв проволочного
	кольца, если сквозь него падает полосовой магнит северным полюсом вниз (см.
	рисунок)?
	Выберите ∂sa верных утверждения.
	1) Тока не будет.
	2) Ток будет протекать.
	3) Ток будет течь по часовой стрелке.4) Ток будет течь против часовой стрелки.
	5) Направление тока будет меняться.
	Ответ:

При настройке радиоприёмника поворотом ручки изменяют площадь пластин конденсатора колебательного контура, перекрывающих друг друга. Как изменяются при этом частота волны, на которую настраивают радиоприёмник, и ёмкость конденсатора, если площадь пластин увеличивается? Для каждой величины определите соответствующий характер изменения:

увеличится уменьшится не изменится Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины.

Цифры в ответе могут повторяться.

	721
Частота волны	Ёмкость
	конденсатора

Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите <u>в</u> таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- А) ЭДС самоиндукции
- Б) индукция магнитного поля

ФОРМУЛЫ

- $1)\frac{U}{I}$
- 2) *UI*
- 3) $\frac{F}{II}$
- 4) *IBl*
- $5) -L \frac{\Delta I}{\Delta t}$

Ответ:

19

18

Α	Б

Каково зарядовое и массовое число частицы, возникшей в результате реакции $^{295}_{92}U \rightarrow {}^{A}_{Z}X + {}^{4}_{2}He$?

Зарядовое число	Массовое число

	Электрон в атоме водорода находи	тся на третьей орбите.
20	Сколько квантов различной энергиз	и может излучать этот
	атом?	
	Ответ: .	
	Интенсивность монохромат	ического света,
21	вызывающего фотоэффект, увелич	ивается. Как при этом
	изменятся число вытекающих	в единицу времени
	электронов и максимальная энергиз	, ,
	каждой величины определите соотв	ветствующий характер
	изменения:	
	увеличится	
	уменьшится	
	не изменится	
	Запишите в таблицу выбранные	цифры для каждой
	физической величины.	
	Цифры в ответе могут повторяться	•
		T
	Число электронов	Энергия электронов
	_	
	По рисунку определите угол	
22	α, а также погрешность	120° 90° 60°
	измерения. Запишите	120° 90° 698
	величину угла с учётом /	3 / 1/2
	погрешности, если	30° - 1
	погрешность прямого	
	измерения составляет цену деления	прибора.
	Ответ: (±) 0
	O1DC1. \	<i>)</i>

В бланк ответов № 1 перенесите только число, не разделяя их пробелом или другими знаками.

Воздух под поршнем сжимали при температуре 27°С, измеряя давление воздуха при разных значениях предоставленного объёма. Погрешность измерения этих величин соответственно равнялась $0.1\cdot10^5$ Па и $0.05\cdot10^{-3}$ м³. Результаты измерения представлены в таблице. Какие два вывода можно уверенно сделать по данным этой таблицы?

V , 10^{-3} m ³	3,5	3	2,5	2
$p, 10^5 \Pi a$	0,7	0,8	0,9	1,2

- 1) Под поршнем было 0,1 моль воздуха.
- 2) Давление газа прямо пропорционально его объёму.
- 3) Давление воздуха линейно возрастало с уменьшением его объёма.
- 4) Под поршнем было 0,2 моль воздуха.
- 5) Процесс изотермический.

Ответ:		
--------	--	--

яркая первая.

Первая звезда излучает в 100 раз больше энергии, чем вторая. Они расположены на небе так близко друг от друга, что видны как одна звезда с видимой звёздной величиной, равной 5. Исходя из этого условия, выберите два верных утверждения.

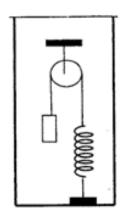
Если вторая звезда расположена в 10 раз ближе к нам, чем первая, то их видимые звёздные величины равны.

Если звёзды расположены на одном расстоянии, то блеск первой равен 5 звёздным величинам, а второй — 0 звёздных величин. Если эти звезды расположены в пространстве рядом друг с другом, то вторая звезда такая тусклая, что не видна невооружённым глазом, даже если бы этому не препятствовала

Первая звезда — белый сверхгигант, а вторая — красный сверхгигант. Первая звезда обязательно горячее второй.

Ответ:

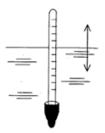
Часть 2

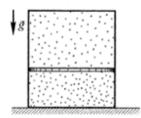

Ответом к заданиям 25-27 является число. Запишите это число в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

25	Два шара одинаковой массы 0,1 кг движутся перпендикулярно друг другу с одинаковыми скоростями 10 м/с. Каков их суммарный импульс после неупругого удара, когда они начали двигаться как единое целое? Ответ округлите до сотых.
	Ответ: кг · м/с.
26	Два моля идеального одноатомного газа сначала охладили, а затем нагрели до первоначальной температуры 400 K, увеличив объём газа в три раза (см. рисунок). Какое количество теплоты отдал газ на участке 1 – 2?
	Ответ: Дж.
27	Кольцо радиуса 10 см из тонкой проволоки с сопротивлением 0,01 Ом находится в однородном магнитном поле, линии индукции которого пересекают плоскость кольца под углом 60°. За какое время в кольце выделится количество теплоты 555 мкДж, если магнитная индукция возрастает со скоростью 0,05 Тл/с? Ответ округлите до целых.
	Ответ с

Для записи ответов на задания этой части (28 – 32) используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (28, 29 и т.д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

28


В сосуде (см. рисунок) находится система тел, состоящая из блока с перекинутой через него нитью, к концам которой привязаны тело объёмом V и пружина жёсткостью k. Нижний конец пружины прикреплён ко дну сосуда. Как изменится сила натяжения нити, действующая на пружину, если эту систему целиком погрузить в жидкость плотностью ρ ? (Считать, что трение в оси блока отсутствует.)


Полное правильное решение каждой из задач 29-32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

29

Ареометр, погружённый в жидкость, совершает вертикальные гармонические колебания с малой амплитудой (см. рисунок). Найдите период этих колебаний. Масса ареометра равна 40 г, радиус его трубки 2 мм, плотность жидкости 0,8 г/см³. Сопротивлением жидкости пренебречь.

Вертикально расположенный замкнутый цилиндрический сосуд высотой 50 см разделён подвижным поршнем весом 110 Н на две части, в каждой из которых содержится одинаковое количество идеального газа при температуре 361 К. Сколько молей газа находится в каждой части

цилиндра, если поршень находится на высоте $20 \ \mathrm{cm}$ от дна сосуда? Толщиной поршня пренебречь.

- Отрицательно заряженная пластина, создающая вертикально направленное однородное электрическое поле напряженностью $E = 10^4$ В/м, укреплена на горизонтальной плоскости. На неё с высоты h = 10 см падает шарик массой m = 20 г, имеющий положительный заряд $q = 10^{-5}$ Кл. Какой импульс шарик передаст пластине при абсолютно упругом ударе?
- При облучении металлической пластинки быстрыми α -частицами небольшая часть этих частиц в результате упругого взаимодействия с ядрами атомов меняет направление скорости на противоположное (аналог опыта Резерфорда). Найдите заряд ядра, если минимальное расстояние, на которое сближались ядро и частица, составило $5 \cdot 10^{-13}$ см. Масса и скорость α -частицы составляют соответственно $7 \cdot 10^{-27}$ кг и $26 \cdot 10^3$ км/с. (Частицу считать точечной, а ядро точечным и неподвижным. Релятивистским эффектом пренебречь. Потенциальная энергия ядра и α -частицы $E_{\text{пот}} = \frac{kq_{\alpha}q_{\text{ядра}}}{r}$, где r расстояние между ядром и α -частицей).